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Abstract
In this paper, valuable formulae describing the behaviour of a number of
physical properties of moderately compressed expanded graphite (CEG) are
given. Many of these relationships provide confirmations of empirical power
law equations which had remained unexplained. Other physical properties are
also described for the first time with power laws whose exponents are derived
rigorously. On the basis of early works by the authors, the origins of the
observed behaviours are explained, hence providing a better understanding of
the material. Thus, the variations with the density of CEG of the thermal and
electrical conductivities, elastic moduli, mosaicities, permeabilities, formation
factors, characteristic pore radii and diameters, surface areas and open pore
volumes are described. Power laws are shown to apply, and the values of the
corresponding exponents are compared both with the results of the authors and
with those from the literature.

1. Introduction

In the past few years, many experimental and theoretical works have been performed on
compressed expanded graphite (CEG). The latter is a self-consolidated material readily
prepared by unidirectional compaction of raw exfoliated graphite, which comprises tortuous
and highly deformable worm-like particles. The interlocking of such worms leads to highly
porous materials, whose properties are worth studying as a function of density. Due to the
numerous applications of expanded graphite, ranging from energy storage to catalysis, heavy
oil abatement and even in biology, a suitable modelling is required. Observing the variations of
a number of physical properties while the material is increasingly compressed, several authors
have suggested some empirical laws, which may be summarized as � ∝ d±α; � is the property
under study, d is the density of the material, and α is an exponent. Such relationships were
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found to apply to many different physical quantities, but had not been explained. Moreover,
most of the values derived for the exponentα were neither explained nor related to any rigorous
model. In the present paper, all the physical properties of CEG measured so far are gathered
together and examined; the above power laws are now rigorously derived, while several others,
rigorous or not, are given. It will be shown that these power laws are just the limiting forms
for d → 0 of more accurate equations already established by the present authors.

Several necessary concepts dealing with CEG are first recalled in section 2. The physical
properties of the graphite backbone and those of the pore space are then detailed in sections 3
and 4, respectively. For each property it is shown that, in agreement with what was empirically
found by a number of authors, power laws may be derived. The corresponding exponents,
rigorous or not, depending on the cases, are discussed and compared with what was obtained
from various research papers.

2. Materials

2.1. Preparation of CEG samples

CEG samples were prepared by axial compaction of raw EG worms in a square tube.
Compressing them obviously induces some orientation in the material, in such a way that every
graphite sheet tends to lie within a plane perpendicular to the pressing stress. Anisotropic
properties are thus expected—hence the chosen geometry for the samples, for which two
directions of measurement are defined. Just like in monocrystalline graphite, the direction a
corresponds to the bedding plane of the graphite flakes, i.e., is perpendicular to the applied
pressure, while c is the orthogonal direction. At the beginning of the compaction, the worms
first rearrange spatially, then interlock with each other as soon as the rigidity threshold of the
system is reached, and finally deform and collapse when the compression proceeds further [1].
Materials having the lowest densities, typically below 0.05 g cm−3, are still isotropic, but more
compressed samples become increasingly anisotropic as the density rises (see further on in the
text).

Except for investigating those properties for which no anisotropy is expected (surface area,
open pore volume, mosaicity), all the samples prepared by the present authors were cubes with
sides of 2 cm. Other experimental data cited and used in this work were obtained from similar
samples, possibly parallelepipedic or even cylindrical in some cases, or with slightly different
sizes. However, the above definition of directions a and c remains the same and applies to any
sample.

2.2. Varieties of EG

The results of the present authors were obtained from two distinct batches of EG, termed EG1

and EG2 in the following, both supplied by the French company Le Carbone-Lorraine. Their
main features have already been extensively detailed (see for example [2, 3]), but should be
briefly recalled here. The worms have the same expansion factor and the same density in the
two materials, but exhibit different aspect ratios (length/diameter), thus leading to different
apparent densities for the raw uncompacted EG, i.e., 7.5 × 10−3 and 2.6 × 10−3 g cm−3 for
EG1 and EG2, respectively. Besides this, the typical graphite flakes within the worms of each
material do not have the same dimensions, those of EG2 being thinner and larger than those of
EG1 (thickness 15 and 23 nm, diameter 32 and 13 µm, respectively).

The other materials whose properties were described in the literature and are reported
here have various apparent densities in the uncompacted state, ranging from 1.7 × 10−3 to
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Figure 1. (a) Thermal conductivities (λ) of various blocks of CEG taken from the literature
(references are given in brackets). The curves are power laws fitted to the values measured along
the direction a, with exponents close to 1.5 (see the text), thus supporting equation (1). (b) The
same as (a) but for electrical conductivities (σ ); the samples are from the authors (CEG1,2), and
equation (3) is checked with values measured along a.

12 × 10−3 g cm−3. Some of them also originate from Le Carbone-Lorraine. It will be seen
below that such initial differences influence the absolute values of the physical properties, but
do not change their quantitative behaviour when the density, d , is increased.

3. Physical properties of the graphite backbone

3.1. Thermal and electrical conductivities

The thermal conductivities λ were measured in both directions a and c for several varieties of
CEG [4–6]. The data points shown in figure 1(a) could be fitted by power laws with exponents
equal to 1.45 (direction a) and 0.27 (direction c) [6],and 1.50 (direction a) and 0.43 (direction c)
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[4, 5]. λa and λc thus vary in very different ways over a wide range of d; however, λa ≈ λc at
low densities. It may be seen from the experimental data that, as d → 0, the following single
relationship applies, whatever the direction of measurement:

λ ∝ d1.5. (1)

Indeed, it seems that the exponent which holds at low densities is that corresponding to
direction a only, and this was also observed for both electrical conductivity and elastic modulus
(see below). This finding probably originates from the intrinsically anisotropic properties of
graphite: their lower values along the direction c of the individual graphite sheets combined
with the orientation should indeed hinder the increases of these properties when the density is
increased.

Equation (1) may be justified by percolation theory. If the graphite is supposed to be heat
conducting while the pore phase is not, then the EG is non-conducting as long as a conductivity
threshold dc is not reached. For conductivity problems, dc corresponds to the connectivity
threshold, which is slightly lower than the apparent density of the raw uncompacted EG [7].
Above dc, percolation theory predicts that the thermal conductivity obeys

λ ∝ (d − dc)
t , (2)

where t is a critical exponent close to 2 for any classical three-dimensional system [8].
Whatever the variety of expanded graphite, dc is much lower than the usual values of the
densities of CEG blocks. Thus, equation (1) experimentally observed by several authors [4–6]
is just an approximation of equation (2) for small dc. Moreover, equating (1) with (2) explains
why the exponent of the former power law is slightly smaller than t .

The same reasoning strictly applies to the case of the electrical conductivity, since it was
shown [3, 7] that equation (2) works with the same conductivity threshold dc and the same
exponent t . Consequently, the simple following power law is expected to describe correctly
the electrical conductivity σ , at least along the direction a, for wide ranges of density, and
along both directions for d → 0:

σ ∝ d1.5. (3)

Figure 1(b) shows the application of (3) to the experimental electrical conductivities measured
along direction a for CEG1 and CEG2 blocks. Exponents equal to 1.50 and 1.49, respectively,
are obtained. Finally, it should be noted that equation (1) was found empirically to work
for both silica [9] and carbon [10] aerogels, while (3) was recovered for monolithic carbon
aerogels [10].

3.2. Elastic moduli

The elastic modulus E of highly porous materials, such as silica aerogels, may be described
by the following relationship over wide ranges of density [11–13]:

E ∝ dγ . (4)

In (4), γ is an exponent whose expected value,based on bending deformation of microstructural
beams, is close to 2 [11]. However, higher values of γ (up to 4) were already reported, and
microstructural models were suggested accordingly [12, 13].

As regards CEG, elastic percolation was already invoked to account for the observed
behaviours of elastic moduli Ea and Ec measured in directions a and c, respectively [3, 14].
E is zero below the rigidity threshold, dr, and above such a critical density, E reads

E ∝ (d − dr)
f , (5)
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Figure 2. Elastic moduli (E) as a function of density; the data are from the authors (CEG1,2),
and from the reference given in brackets. The curves are power laws fitted to the values measured
along the direction a, with exponents close to 2 (see the text), thus supporting equation (6).

where f is a critical exponent whose value depends on the kind of elastic force within the
material. In three-dimensional systems, it was shown that central forces (i.e., normal to the
particle surfaces) are predominant when f ≈ 2, while f is found to be close to 4 when bond-
bending forces or beams describe better the micromechanical characteristics (see [3, 14] and
references therein). In the case of CEG, the values of dr, though higher than those of dc, are
still low, and hence equation (5) may be approximated by

E ∝ d2. (6)

In (6), the exponent is a little higher than in both (1) and (3) because, for any given value of d ,
(d − dr) < (d − dc). Figure 2 shows that (6) is well obeyed, with exponents of 2.05 (CEG1),
2.05 (CEG2), and 2.23 (data from [15]), at least for Ea , over a wide range of d , and for Ec

for d → 0. These features are thus similar to what was found for both thermal and electrical
conductivities.

3.3. Mosaicity

In a previous work [1], the excluded volume of thin discs was calculated and used to show
that, while EG worms are undergoing compaction, the angle of greatest disorientation β of the
graphite sheets within the worms obeys the following equation:

2β − sin(2β) = density of graphite

dworm
× 2

aspect ratio of the graphite sheets
. (7)

In equation (7), the density of graphite is assumed to be 2.2 g cm−3, and the aspect ratio
of the graphite sheets is the diameter to thickness ratio of the constitutive graphite discs within
the worms. For both CEG1 and CEG2, such an average thickness was deduced from surface
area measurements of the raw uncompacted material, while the diameter was calculated from
aspect ratios derived from application of effective-medium theory to the conductivity data of
CEG blocks [7].

To second order in β, (7) becomes

2β − 2β +
(2β)3

6
∝ d−1

worm. (8)
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Figure 3. The mean angle of disorientation (θ) (i.e., mosaic spread) of the graphite sheets within
CEG1 and CEG2 blocks. The curves are power laws with exponents close to −1/3 (see the text),
thus supporting equation (12).

The density of the worms within the CEG blocks was calculated according to

dworm = d

1 − κ
(

1 − d
density of graphite

) , (9)

where κ is a constant derived from the rigidity threshold of each EG [1]. For d → 0, the
limiting form of equation (9) is

dworm ∝ d. (10)

Substituting (10) in (8) leads to

β ∝ d−1/3. (11)

Now the mosaic spread, which corresponds to the average disorientation angle θ between
the graphite sheets in the whole CEG, is directly proportional to β [1], and hence

θ ∝ d−1/3. (12)

Equation (12) may be checked for both sets of mosaicity results, corresponding to CEG1 and
CEG2, obtained from XRD measurements. Figure 3 thus shows the mosaic spread for both
materials. Fitting a power law to the experimental points leads to exponents equal to −0.32
and −0.23, respectively, i.e., close to −1/3.

4. Physical properties of the pore space

The following now deals with a number of properties describing the pore space of CEG blocks,
namely permeability, formation factor, hydraulic and dynamically interconnected pore radii,
and critical pore diameter. Before detailing each of these properties, a few definitions should
first be recalled.

The permeability, k, has the dimension of an area, and hence it may be seen as representing
the cross-section of an effective channel for fluid flow through the pore space. k is thus
proportional to a squared length L0 such that [16]

k = L2
0

F
, (13)
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where F is the so-called formation factor. F is an adimensional parameter defined for materials
whose pore space may be saturated with a conducting fluid, such as brine. It is simply the
ratio of the conductivities of the free electrolyte (χ0) to that of the saturated pore phase of the
material under study (χ). F is related to both the tortuosity factor τ and to the open porosity
P according to F = τ/P . Unlike k, the parameters F and τ are scale-invariant quantities,
meaning that if the sizes of the pores and those of the solid grains are magnified or shrunk,
leaving the porosity unchanged, their values are unaffected. Equation (13) is thus a convenient
formula since it both expresses that k has the dimension of an area and includes the tortuosity
and the volume fraction of voids through F .

Depending on the theories, L0 may take several meanings; hence the various definitions
below.

4.1. Characteristic pore radii and diameters

According to the authors of several major research papers and reviews dealing with the
description of porous media [16–21], the characteristic pore radius (or diameter) may have
different definitions. The older theory of Carman and Kozeny deals with the so-called hydraulic
radius rh defined as

rh = 2Vp

Sp
, (14)

where Vp and Sp are the volume and the surface of the pore space, respectively [18, 19].
An alternative pore radius, �, was proposed by Johnson et al [20], and corresponds to

a ‘dynamically connected pore size’. It may be derived from measurements of the electrical
conductivity of the electrolyte-saturated pore phase, and reads

� = 2

∫ |∇ζ(r)|2 dVp∫ |∇ζ(r)|2 dSp
= 2

Vp

mSp
, (15)

where ∇ζ(r) is the potential drop across the pore of radius r , and m is a constant found
experimentally to be close to 1.5. For ideal porous media made of a packing of spherical
grains, � was shown to obey the following equation [20]:

� = 2P D

9(1 − P)
, (16)

where D is the grain diameter. Describing CEG as a packing of porous graphite spheres is
indeed a very rough model; nevertheless the latter was shown to work correctly in the density
range of interest, i.e., for 0 < d < 0.3 g cm−3 [22]. Since, for a spherical grain,

D = 3

√
6M

πdworm
∝ d−1/3

worm, (17)

where M is the mass of the grain, substituting (17) and (10) in (16), one gets

� ∝ d−4/3. (18)

Thus, the values of �, already presented in a previous paper dealing with CEG1 [22], may be
fitted by a power law such that the exponent is indeed −1.37. However, since � was calculated
from equations (16) to (17), it is obvious that one will find such an exponent to be close to
−4/3. Consequently the following, which consists in checking (18) from separate data, is
worth developing.

The parameter δc introduced by Katz and Thompson [21, 23] is one more possible
definition for the characteristic pore size. It may be obtained from intrusion experiments of a
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Figure 4. Critical pore diameters (δc) derived from intrusion porosimetry experiments. The data
are from the authors (CEG1) and from the references given in the brackets. The curves are power
laws with exponents close to −4/3 (see the text), thus supporting equation (21).

fluid—usually mercury—and corresponds to the critical pore diameter at which the invading
fluid first forms a connected path spanning the sample. δc is located at the inflection point
of the experimental injection curve, i.e., it is the abscissa of the maximum of the plot of
incremental intruded volume versus pore diameter. Since, for a given porous medium, the
product permeability k × formation factor F is such that [16, 24]

k F ∝ �2,

k F ∝ δ2
c ;

(19)

thus

δc ∝ �, (20)

and hence, given (18),

δc ∝ d−4/3. (21)

A number of mercury porosimetry measurements were performed on CEG, from which
the curves for δc versus d were built up. As shown in figure 4, fitting a power law to the
experimental results of [25] gives the exponent −1.75, while the data points of [26] lead to
−1.34 and −1.66, and those of [27] to −1.34. Finally, the data of [4] lead to an exponent
of −1.4. All these values are indeed close to −4/3, thus supporting equation (21) but also
equation (18) through (20).

Coming back to the hydraulic radius introduced above (equation (14)), rh was calculated
for CEG1 blocks from open pore volumes (measured by helium pycnometry) and from surface
areas (measured by krypton adsorption at 77 K). The results are shown in figure 5 and, again,
a power law may be fitted to the data points; one finds

rh ∝ d−0.94. (22)

Understanding such an exponent, close to −1, is not so easy. Indeed, Kozeny–Carman
theory states that

k = (Vp/Sp)
2

2F
= r2

h

8F
. (23)
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Figure 6. The parameter m of equation (15), showing that
m is not a constant but depends on the density. However,
m is still close to 1.5 in the relevant porosity range. The
curve is just a guide for the eye.

Hence, combining (23) and (19), one gets:

k F ∝ r2
h ∝ �2 ∝ δ2

c . (24)

Consequently, the theoretical value of the exponent in equation(22) would be that of both �

and δc, i.e., −4/3. Thus, the experimental uncertainties in the measurements of both Vp and
Sp could account for the deviation observed in the value of the exponent.

Otherwise, the observed variation of rh as a function of d is really slightly different from
that of the other pore sizes � and δc. This latter interpretation is justified by the fact that a
very similar power law, rh ∝ d−1.04, was obtained elsewhere [27] (see figure 5), and could also
explain why the agreement observed between the calculated values of � from equations (16)
to (17), on the one hand, and from equation (15), on the other hand, is correct, but not very
accurate [28]. In such conditions, the parameter m within equation (15) should depend on d .
Plotting m calculated from (15) and from the experimental values of Vp and Sp does indeed
show—see figure 6—that this parameter is not a constant, even if its value is close to 1.5 in
the relevant range of density.

4.2. Permeability and formation factor

It is well known that the effective conductivity χ of porous media saturated with a conducting
fluid follows the so-called Archie law [29], later explained on the basis of percolation
theory [30]. It reads

χ = χ0 Pn, (25)

where χ0 is the conductivity of the saturating fluid and n is an empirical exponent referred to
as the ‘cementation index’ [31]. Besides this, the permeability k is often described over wide
porosity ranges according to an old empirical relationship ([18, 19, 32] and references therein),
later confirmed by effective-medium theory [18]:

k ∝ Pn′
. (26)
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Figure 7. Permeabilities (k) of CEG1 blocks, measured along a and c directions. The curves are
power laws with exponents close to −16/3 (see the text), thus supporting equation (30).

In (26), n′ is another empirical exponent related to n by the following relationship, which was
confirmed by many experimental studies [33]:

n′ = 2n. (27)

Since F = χ0/χ , combining (25), (26), and (27), one gets

k ∝ F−2. (28)

Equation (28) was already checked elsewhere with permeabilities and formation factors of
CEG1 blocks [28], and may be used now for deriving the variation of both k and F versus the
density d of the material. Indeed, substituting (28) in (19) leads to

k ∝ �4, δ4
c ,

F ∝ �−2, δ−2
c .

(29)

By virtue of equations (18) and (21), one finally gets

k ∝ d−16/3 (30)

and

F ∝ d8/3. (31)

As shown in figure 7, equation (30) is correct according to the experimental data of
the present authors (CEG1 blocks), leading to exponents equal to −4.93 and −6.11 for
permeabilities measured in the directions a and c, respectively. Other works performed on
samples of the same kind lead to exponents of −4.71 (direction a) and −5.06 (direction c) [25],
−5 (direction a) and −6 (direction c) [26], and −5.03 (direction c) [5]. All these data are in
good agreement with the expected value of −16/3.

Much less work was devoted to the experimental determination of the formation factors.
Anyway, the anisotropy seems to induce severe deviations from equation (31) since only one
single set of data is in agreement with the latter. Indeed, fitting a power law to the values
of F measured by the present authors on CEG1 blocks leads to exponents of 1.29 (direction
a) and 1.65 (direction c) [22]. It is rather surprising that these exponents are so different
from 8/3, since the measured F were shown to be in agreement with the calculated ones, for
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which exponents of 2.15 (direction a) and 3.38 (direction c) may be derived [22]. In another
work [26], the formation factors were described by exponential laws. Fitting a power law to
these data leads to exponents equal to 0.97 (direction a) and 2.70 ≈ 8/3 (direction c). It thus
seems that only the formation factors measured along the direction c could be described by
equation (31), similar to what was observed for λa , σa , and Ea with their respective power
laws.

4.3. Surface area and open pore volume

The modelling of a system of accordions undergoing compaction was performed recently,
and the surface area was calculated accordingly [2]. Good agreements were found between
measured and calculated areas for both varieties CEG1 and CEG2. In this previous study,
the same concepts as those dealing with the mosaicity were used, thus supporting the former
modelling of the compaction of EG [1]. It was shown that, despite the simplicity of the
geometrical model invoked, the surface area Sp is a very complex function of the angles
between graphite flakes, their aspect ratios, and the density of the CEG blocks, all these
quantities being linked with each other. However, when d → 0, and to first order in d , Sp can
be written as

Sp ≈ x + yd−1/2, (32)

where x and y are constants. In the present work, the physical properties of CEG are described
by power laws, and thus it is useful to rewrite equation (32) in the form

Sp ≈ zd−q . (33)

Equating (32) with (33) for d → 0 gives the following relationship:

q ≈ ln(z/x) − (y/x)d−1/2

ln d
. (34)

In the usual range of density within which most of the measurements on CEG blocks were
made, i.e., for 0.01 < d < 0.3 g cm−3, the exponent q is close to 0.13 for both CEG1 and
CEG2. Moreover, the surface area derived from an electrochemical method for other CEG
samples [27] may also be fitted by a power law with an exponent −0.16. The surface area
of moderately compressed EG may thus be described by Sp ∝ d−0.13 but, unlike the previous
exponents, q = 0.13 is not rigorous since it is density dependent (see equation (34)). However,
such an approximation is not so bad, as seen in figure 8, and may be useful for describing the
behaviour of the open pore volume Vp.

Indeed, given equations (14), (22), and (33), Vp is expected to vary as

Vp ∝ d−1.1. (35)

Incidentally, if rh ∝ � ∝ d−4/3 is correct, then

Vp ∝ d−1.46 ∼ d−3/2. (36)

Figure 9 exhibits the specific pore volume, obtained from helium pycnometry measurements
performed on CEG1, plotted as a function of the density. The power law fitted to the data
points gives an exponent of −1.04, thus supporting equation (35) rather than (36).

Finally, the open porosity may be calculated from

P = Vpd (37)

and hence, substituting (35) in (37),

P ∝ d−0.1. (38)
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Figure 8. Specific surface areas (Sp) of CEG1 and CEG2
blocks. The curves are power laws with exponents close
to −0.13 (see the text), thus supporting equation (33) and
hence (32) through (34).

Figure 9. Specific pore volumes (Vp) of CEG1. The
curve is a power law with an exponent close to −1.1 (see
the text), thus supporting equation (35).

Such a result seems to be in contradiction with other works for which the open porosity is a
linear decreasing function of d [26, 27]. However, it should be noticed that equation (38) may
be rewritten as P ∝ [d0 + (d − d0)]−0.1, where d0 � 0 is a given value of the density. Taylor
expansion to first order in d thus leads to

P ∼ a − bd with

{
a = 1.1d−0.1

0

b = 0.1d−1.1
0 .

(39)

Thus, the data points for P versus d may also be fitted by a straight line, and even more
satisfactorily the exponent within equation (38) is very small, which is actually the case here.
Figure 10 does indeed show that the results of the present authors may be described by a linear
law; incidentally, the data points are very similar to those of [26]. Such a way of rewriting
power laws in d dealing with small exponents through Taylor expansion also explains why,
in a given range of density, the surface area may be seen as linearly decreasing with d [27]
(while a power law is evidenced as soon as a wider range of density is studied). Moreover,
the mosaic spread for which the exponent is rather small (−1/3) could also be seen as linearly
decreasing within the range of d studied (see figure 3).

5. Conclusions

On the basis of early works and supported by a number of data from the literature, many
useful power law equations describing the physical properties of CEG were proposed. Most of
them apply over the whole range of densities 0 < d < 0.3 g cm−3, whatever the direction of
measurement. However, due to the sometimes strong anisotropies, a few of these power laws
apply only along one single direction, either a or c. In such a case, the properties concerned
along the other direction are described by the same equations in a vanishingly small range of
d when d → 0. All of these power laws are listed in table 1.

In table 1, the fractional exponents are rigorous, while the others are not, either because no
analytical expression is available yet (e.g. rh, Vp) or because the power law is just an estimate
of a more accurate equation (e.g. λ, σ , E , Sp). However, such simple equations allow one to
predict how many physical properties vary when expanded graphite is compressed.
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Figure 10. Open porosity (P) of CEG1. Just like in other works, the data may be described by a
straight line.

Table 1. Power laws describing the physical properties of CEG blocks as a function of their
density d.

Properties of CEG described by power laws

Graphite backbone Pore space

Thermal conductivity λa ∝ d1.5 Dynamic pore radius � ∝ d−4/3

Electrical conductivity σa ∝ d1.5 Critical pore diameter δc ∝ d−4/3

Elastic modulus Ea ∝ d2 Hydraulic radius rh ∝ d−0.94

Mosaic spread θ ∝ d−1/3 Permeability k ∝ d−16/3

Formation factor Fc ∝ d8/3

Surface area Sp ∝ d−0.13

Open pore volume Vp ∝ d−1.1
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